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Abstract 

In part I of this series the problem of immanent 
chaotization of crystal structures was described in 
simple models and the mathematical approach to the 
calculation of diffuse scattering (DS) was described. 
It was formulated that the loose packing of most real 
crystals appears to be the universal microscopical 
cause of DS. In the present paper the microscopical 
nature of chaotization is analysed and a quantitative 
description of the structural loose packing is given 
for cubic perovskites; these are particularly con- 
venient examples because the most vivid and 
thorough experimental data on DS were obtained for 
such crystals: KNbO3, BaTiO~, NaNbO3, KMnF3. 

Introduction 

The crystals with which we begin our study of this 
important problem belong to the class of ionic com- 
pounds and therefore it is necessary to discuss the 
question of ionic radii. We shall take the numerical 
values for the ionic radii for ions of different valency 
and their dependence upon coordination number 
from tables obtained by Shannon (1976), where a 
vast number of experimental and theoretical data 
have been gathered and analysed. Among numerous 
sources on the values of ionic radii Shannon's tables 
are beyond doubt the best grounded and most 
reliable. However, as will be seen later, even these 
tables would not serve as the highest authority and 
in some details they appear to be unsatisfactory. 

We shall show that the DS obtained in a mono-Laue 
experiment could be a valuable and indispensable 
source of data for obtaining ionic radii. In all con- 
siderations concerning X-ray scattering we naturally 
deal with the system of so-called 'classical' ionic radii 
(Goldschmidt's radii) leaving aside the 'physical' 
radii, the whole system of which has also been given 
by Shannon (1976). 

The crystallochemical analysis of crystals with per- 
ovskite structure has been carried out by various 
authors but, in our opinion, has not been completed 
and we pay our attention once again to this problem 
especially in connection with the DS description in 
different perovskites. 
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Loose-packing types of perovskite structure 

The crystal structure of perovskites ABX3 is shown 
in Fig. 1 by two a and b choices of the unit cell. For 
the sake of clarity ions are not drawn to scale. In fact, 
they contact each other according to the very 
definition of ionic radii. If all ions contact each other 
and there are no gaps between them, such a perovskite 
may be called an ideal or close-packed perovskite. 
In such a crystal all atoms are mutually squeezed, 
have no degrees of freedom and DS is entirely absent. 
However there is no such perovskite since there are 
no ionic radii RA, RB and Rx with such ideal ratios. 
Depending on the specific values of the ionic radii 
in real perovskite crystals gaps between some ions 
always exist and hence there is some freedom for 
displacements and oscillations of the ions. It should 
be reiterated that the usual thermal vibrations owing 
to the small thermal gaps which persist even in close- 
packed structures and lead to Debye-Waller factors 
for Bragg reflections and to diffuse background is not 
taken into account here. According to the different 
values of RA, Re and Rx various types of gaps 
between ions may occur or, in other words, there are 
different types of loose packing of the perovskite 
structure. Let us consider all these types in turn. 

Let the lattice parameter a or the size of the perov- 
skite cubic unit cell be formed by the contacting of 
ions A and X, then some possibilities for motion of 
ions B and X are left. In the other real perovskite 
with other values of the ionic radii the lattice par- 
ameter may be formed by the contacting of B and X 
ions with possibilities for the motion of ions A and 
X, etc. 
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Fig. 1. Unit cell of cubic perovskite. 
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It is convenient to visualize the formation process 
of the perovskite structure as the approaching of ions 
which initially are far from one another. In answering 
the question as to which pair of ions has to contact 
first, one obtains a priori five possibilities: A-X,  B-X,  
X - X ,  A - A  and A - B  (B ions are unable to contact 
since they are always separated by an X ion). 

Let us call these types (I)-(V). From simple 
geometrical considerations it is easy to write down 
the expression for the lattice parameter a in all these 
types: 

(I) A - X  ax=aAx=V~(Ra+Rx)  

(II) B - X  a n = a a x = 2 ( R B + R x )  

(III) X - X  am = axx = 2v/2Rx 

(IV) A - A  aiv = aAA = 2RA 

2 
(V) A - B  a v = a A B = ~ ( R A + R a ) .  

(1) 

For the realization of type (I) a~ has to be the 
greatest among the rest, ai. One obtains a system of 
four inequalities: 

v/2( RA + Rx ) > 2(R8 + Rx ), 

,¢C~( Ra + Rx ) > 2RA, 
(2) 

x/2( gA + Rx)  > 2x/2gx, 

x/~(R A "t- R x )  > 2"~ (R  A -t- RB). 
v3 

Similar systems yield the realization of all the remain- 
ing types. It is convenient henceforth to divide all the 
inequalities by Rx and to use only the relative radii 
rA and rs. Then instead of (2) one obtains: 

1 < rA<x/~+ 1 = 1 

rA > x/2rB + (x/~-- l ) (3) 

rA > (V/-6+ 2)rB--(V/6+ 3) 

and similar systems of inequalities for the remaining 
types (II)-(V). Each inequality in (3) generates some 
straight line in two-dimensional space (rA, rB) deter- 
mining some boundary between the neighbouring 
types (I)-(V). 

Fig. 2 shows the diagram of  perovskite types in 
two-dimensional space of relative radii rA and rs. It 
shows the five regions of all five contact types (1). 
The boundaries in Fig. 2 are determined by the 
relations: 

(a) rs = x /2-1  

(c) rA--V~rB+(V~--I) 

(e) rA=rB+l 

(g) ra = (x/3-- 1)rn +x/3. 

(b) rA = 1 

(d) rA=x/2+ 1 

x/3+l  
(f)  rA-- rB 

2 

(4) 

The points A, B and C correspond to three special 
ratios among RA, Rn and Rx at which the simul- 
taneous contacting of all nearest ions takes place, the 
gaps and degrees of freedom being completely absent. 
These are the close-packed perovskites. 

In the derivation of loose-packing types in Fig. 2 
only the geometry of the perovskite structure has been 
used and the relations of RA, Rn and Rx have been 
assumed to be arbitrary (each had to be positive and 
non-zero). If we now take the actual crystals ABX3 
with perovskite structure, take RA, R~ and Rx values 
for each from Shannon's tables (of course, the valency 
and coordination numbers XnA, V~B, Wx are also 
taken into account), calculate ra and rB for each 
crystal, and place the point obtained onto the diagram 
in Fig. 2, we obtain the curious picture shown in Fig. 
2, comprising a system of points crowded around the 
point A. 

This means that most of the diagram in Fig. 2 
possesses only geometric, but not physical, sense since 
such ionic radii do not exist in nature. Therefore, 
henceforth one has to keep only the actual region of 
the diagram limited approximately by rB = 1 and ra = 
1"5. AS a consequence only one variant of a close- 
packed perovskite structure corresponding to point 
A (rA = 1, rB = x/2-  1) and only three types of loose 
packing remain (the rest will not be regarded owing 
to their absence). 

Perovskite chaotization types 

The types (I)-(III)  are distinguished by different 
abilities of the ions to move and by different abilities 
to break spontaneously the ideal perovskite structure, 
i.e. its chaotization. Thus we have come to the main 
theme of the paper: the loose packing of a crystal 
structure (three types of loose packing in real perov- 
skites), i.e. the existence of gaps between ions appears 
to be the cause of immanent chaotization which is the 
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Fig. 2. Diagram of five types of perovskite loose packing, obtained 
in a geometrical analysis of the perovskite structure. The actual 
part of the diagram is shown by dots. 
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cause of  the instability of  the ion positions, their oscilla- 
tions at high temperatures and their static displacements 
at low temperatures. Later on we shall see that there 
exist one or several critical temperatures at which 
oscillations begin to freeze and transform into static 
displacements. In other words, the perovskite under- 
goes one or several structural phase transitions from 
the cubic structure to the structures with lower 
symmetry. 

Fig. 3 shows the real ionic radii and gaps between 
them for three types of loose packing, (I), (II) and 
(III). For comparison the ideal close-packed perov- 
skite (type O) corresponding to point A is also shown 
in Fig. 3. The left side of Fig. 3 depicts a face of a 
perovskite cube, while the fight side depicts the 
middle section of the cube, parallel to its face. 

Let us consider in detail type (I) where ions A and 
X contact each other. One can see in Fig. 3 that ion 
A is tightly squeezed by X ions in every plane (x, y 
and z); it possesses no degrees of freedom. Ion X 
has only one degree of freedom able to move normally 
to the face in which it is placed. Ion B has all three 
degrees of freedom. Let ion X with number 1 being 
in the xy plane slightly shift upwards along the z axis 
(see Fig. 4). Its movements are directed towards the 
nearest cation B with number 2. Because of the 
Coulomb interaction energy minimum of the nearest 
cations and anions this B ion has to shift towards the 
initially shifted X ion. For the same reason cation 3 
has to shift upwards, cation 4 downwards and so on. 
The most possible shifts are limited by the value of 
the initial gap between these ions. If the perovskite 
structure is still stable (temperature T above the struc- 
tural phase transition T~) then the ion movements are 
just of the oscillation type owing to the restoring force 
with the same Coulomb nature. These are the optical 

T~pe 0 

X-X 

Fig. 3. Three actual types of perovskite loose packing. The contacts 
of ions and gaps between them are shown. Left column: the 
faces of the perovskite unit cell. Right column: the middle section 
of the unit cell. 

oscillations corresponding to a particular z mode. 
When the temperature decreases below Tc the z mode 
freezes and the crystal naturally loses the cubic struc- 
ture. It should be noted that in Fig. 4 the ion chain 
as a whole has not displaced in any direction, while 
the subchain of X ions and the subchain of B ions 
have displaced upwards and downwards accordingly. 
The displacements of subchains are inversely propor- 
tional to the ionic masses and the centre of mass of 
the whole chain has not shifted. 

In the movements considered above only X ions 
from xy faces were shifted and only z movements of 
B ions were taken into account. It is clear that similar 
chains could also be formed in the x and y direc- 
tions. In paper III it will be strictly proved that the 
coincidence of the structural phase transition 
temperatures T~, T y and T~ is energetically dis- 
advantageous so that the freezing of three families of 
chains will take place one by one. Above all three 
critical temperatures there exist optical oscillations 
along all three directions. 

As far as the form of movement peculiar to the 
loose-packing type I involves anion shifts along the 
chain directions we shall call this process shifting. 
Fig. 4 shows the oscillation (or displacement) mode 
with k = 0, i.e. with conservation of the cell. A similar 
process with k ~ 0, i.e. with doubling of the transla- 
tional period in the plane perpendicular to the chain 
direction, is also possible; we shall call this antishift- 
ing. At T > Tic we shall call the corresponding process 
parashifting. It is essential that extended one- 
dimensional objects appear in the consideration and 
hence the problem has been reduced to a two- 
dimensional Ising problem [see Kassan-Ogly & Naish 
(1986)]. 

Let us also consider in detail type (II) where B 
and X ions contact each other. One can see in Fig. 
3 that ion B is tightly squeezed by X ions in all 
directions and does not possess any degree of free- 
dom. The X ion located in the xy face cannot move 
along the z axis but possesses two degrees of freedom 
in the x and y directions. An ion has three degrees 
of freedom. Let the X ion with number 1 (see Fig. 
5a) slightly shift in the +x  direction. Again from 
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Fig. 4. Electrostatic mechanisms of spontaneous chaotization in 
perovskites of type (I). The origin of shifting. 
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Coulomb energy considerations it is clear that ion X 
with number 2 has to move in the +y direction (Fig. 
5b). For the same reason ion X with number 3 has 
to shift in the - x  direction and so on. As a result one 
obtains a completely determined system of X-ion 
shifts in the xy plane (Fig. 5c). (If one takes into 
consideration A-ion motion one obtains the system 
of atomic shifts over the whole crystal, but such 
movements are energetically much more disadvan- 
tageous.) Hence we shall not take the movements of 
A ions into consideration at all. If the initial X ion 
shifts in the +y direction so one will obtain the system 
of shifts identical to Fig. 5(c), but with another crys- 
tallographically equivalent orientation. It is also seen 
that in each perovskite cell 'circular' motion of X 
ions 1, 2, 3 and 4 in the xy plane takes place (Fig. 
lb) while atoms 5 and 6 remain motionless. As a 
result the concerted 'rotation' of all octahedra in the 
xy plane occurs (with engagement as between gears). 
It should be noted that such motion is not a strict 
rotation of octahedra since they change their shape 
in the xy plane. Such motion appears to be a certain 
vibrational mode of the perovskite lattice described 
in the literature and called tilting [see, for example, 
Alexandrov, Anistratov, Besnosikov & Fedoseeva 
(1981) or Megaw (1973)]. It is clear that besides the 
z tilting mentioned above x and y tilting may take 
place as well. In z tilting the correlation between the 
rotations of octahedra from neighbouring layers is 
absent at first sight. If the interaction between layers 
were taken into account so the same (tilting) or 
opposite (antitilting) rotation would be profitable. At 
high temperatures simultaneous but independent 
rotation in neighbouring layers takes place which will 
be called henceforth paratilting. After cooling below 
Tic one of the tiltings (or antitiltings) freezes and one 
obtains the first structural phase transition. Later on 
it will be shown that temperatures TT, T y, T~ are 
different; their coincidence is energetically disadvan- 
tageous. Thus type (II) is characterized by the 
existence of two-dimensional extended objects 
including only X ions and therefore the problem is 
reduced to a one-dimensional Ising problem [see 
Kassan-Ogly & Naish (1986)]. 

Finally let us consider type (III) where X ions 
contact each other. One can see in Fig. 3 that X ions 
are squeezed completely and A and B ions have three 
degrees of freedom. There is no such simple mechan- 

(a) (b) (c) 

Fig. 5. Electrostatic mechanism of spontaneous chaotization in 
perovskites of type (II). The origin of tilting. 

ism for the formation of extended objects and vibra- 
tions of A and B ions are not concerted. As was 
shown in paper I such a case is not interesting since 
it leads only to the diffuse background while the 
existence of chains in type (I) and planes in type (II) 
leads to shining relplanes and relrods. However, even 
in type (III) the extended objects are also possible 
but the mechanism of their formation is far more 
complicated. This question will be considered 
elsewhere. 

Stability of the perovskite structure 

Let us return to type (I). Ion B is free to move within 
its octahedron interstice and the value of its amplitude 
is determined by the size of the interstice and its 
radius RB. If Re is very small ion B can pass through 
three X ions in the [111] direction and leave the 
octahedron interstice. This is the first possibility to 
be realized with decreasing Re. One can see from 
Fig. 6(a) and (b) that it can occur at (RB+R×)< 
a/v~. The inverse inequality determines the boun- 
dary condition of stability of the perovskite structure 
in type (I). Making use of the relation a =  
x/2(RA+ Rx) for type I [see (1)] one can obtain the 
stability condition of type (I) in the form: 

type(I):  rA<v/3rB+(x/3-1). (5) 

Let us similarly consider type (II). The instability 
of ion X in paratilting occurs when the X ion begins 
to move freely between A ions (see Fig. 6c). This 
occurs when 2(RA+ R×) < a. Using the relation (1) 
a = 2(RB + Rx) for type (II) one obtains the stability 
condition for type (II): 

type (II): rA > re. (6) 

Quite similarly one can obtain the stability condi- 
tion for the motion of A and B ions in type (III): 

2 
type (III): ra>v~-- 1 and r e > ~  1. (7) 

The diagram of the perovskite loose-packing types 
in Fig. 2(a) should be depicted in a new way: (1) it 
is sufficient to regard only the actual part of the 
diagram with rA <<. 1"5 and re < 1; (2) let us restrict 

(a) (b) (c) 

Fig. 6. Appearance of instability in the cubic perovskite structure. 
(a) and (b) for perovskites of type (I). (c) for perovskites of 
type (II). 
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the regions of types (I), (II) and (III) by the stability 
boundaries (5-7); the resulting diagram is shown in 
Fig. 7(a), which also shows the types of motion 
inherent in each region. 

It should be noted that similar considerations for 
the remaining types (IV) and (V) give additional 
boundaries so that the stability diagram of cubic 
perovskite has the shape of an enclosed polygon (Fig. 
7b). Some considerations concerning the influence of 
the ionic-radii values on phase transitions in perov- 
skites are given by Rousseau, Gesland, Julliard, 
Nouet, Zarembowitch & Zarembowitch (1975) and 
by Boyer & Hardy (1981). 

Other structural types of ABX3 compounds 

Beyond the boundaries (and even within, in part) of 
stability of cubic perovskite the other ABX3 structural 
types may be placed on the plane (rA, rB). The system- 
atic study of all ABX3 types is rather a complicated 
independent problem and it is beyond the scope of 
the present paper. However, it should be noted that 
other A B X  3 structural types differ from the cubic one 
by the set of distortions which are not small in general. 
Among these types one should consider, of course, 
calcite, aragonite, ilmenite, the LiNbO3 structure, the 
CsNiCI3 structure, etc. Moreover, the coordinate axes 
correspond to rA = 0 or rB = 0, i.e. to the structural 
types of binary compounds the CuaAu structure or 
the ReO3 structure, for example. For each type of 
structure a similar geometric analysis could be carried 
out and the types of loose packing, the regions of 
stability and the corresponding motions could be 
found. In one of the following papers we shall 
consider such questions in some binary compounds. 

Realization of perovskite types and diffuse scattering 

Fig. 8 shows the actual part of the whole diagram of 
cubic perovskite and various experimentally studied 
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Fig. 7. Diagram of perovskite types and stability boundaries.  
(a) Actual part of diagram. (b) Complete diagram, obtained in 
geometrical analysis. 

crystals are denoted as points. It can be seen that real 
perovskites are of all three types. 

It is natural to expect that for all perovskites of 
region (I) (shifting) in the mono-Laue experiment 
the specific families of streaks would be observed on 
the X-ray pattern that corresponds to the shining 
planes in relspace. The origin of these relplanes is 
connected with type (I) loose packing, i.e. with the 
existence of one-dimensional rigid movable objects 
(chains) as had been shown in paper I. As for the 
perovskites of region (II) (tilting) specific families of 
spots (diffuse but not the Bragg ones) corresponding 
to shining relrods are expected to be present on the 
X-ray pattern in the mono-Laue method. The origin 
of these relrods is connected with the existence of 
loose packing of type (II), i.e. with the existence of 
two-dimensional movable rigid objects. 

At present the experimental data on diffuse scatter- 
ing in the mono-Laue method are available for 
KNbO3 (Comes, Lambert & Guinier, 1970), for 
BaTiO3 (Harada & Honjo, 1967), for KMnF3 (Comes, 
Denoyer, Deschamps & Lambert, 1971), and for 
NaNbO3 [Denoyer, Comes & Lambert (1970, 1971), 
and also Ishida & Honjo (1973)]. The X-ray patterns 
for the first three crystals convincingly correspond to 
their positions on the perovskite diagram and to the 
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Fig. 8. Distribution of real cubic perovskites over the diagram 
of loose-packing types, based on Shannon's values of ionic 
radii (~). 
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theoretical predictions mentioned above. NaNbO3 is 
the sole and unique example in which tilting, anti- 
tilting and perhaps shifting simultaneously coexist. 
This special case of coexistence will be considered 
elsewhere. 

The detailed quantitative description of diffuse 
scattering in various perovskite types, the temperature 
evolution of DS, and the spontaneous structural 
phase transitions in such crystals will be given in 
papers III and IV for the most typical examples 
(KNbO3 shifting; KMnF3 tilting), while only the 
classification of the possible types and the geometrical 
analysis of their loose packing is the main goal of the 
present paper. 

Tolerance factor 

In the literature, in the discussion of the stability 
region for the perovskite structure the concept of 
tolerance factor is often used, first introduced by 
Goldschmidt (1926). 

RA + Rx rA-t-1 
r = v ~ ( R ~ +  R x ) - v ~ ( r s +  l). (8) 

For the ideal perovskite structure ~-= 1, while the 
deviations from number I allowed by various authors 
do not coincide. Goldschmidt himself expressed the 
stability of the perovskite structure by the empirical 
relation 0.8 <'r  < 1; other authors allow a small excess 
over unity. One can see from our relations (4) that 
z = l  corresponds to the straight line (c) on the 
diagram (Fig. 7). Away from (c) the tolerance factor 
changes and accepts the greatest deviations from 
unity on the boundaries of stability in types (I) and 
(II). Some boundary values of the tolerance factor 
are shown in Figs. 7 and 8. 

Thus the question of the theoretically allowed 
values of the tolerance factor is solved: for shifting 
perovskites 1 < z < 3~/~/2, for tilting perovskites 
1/x/2 < ~- < 1, for perovskites from region (III) 1 / ~  < 
z < v~/2. The most likely interval for the tolerance 
factor in perovskites is 0.707 ~< ~-~< 1.225. According 
to Shannon's tables all real perovskites cover approxi- 
mately the same interval of r, as shown in Fig. 8. 

Remarks on Shannon's ionic radii 

The so-called 'classical' radii in Shannon's tables have 
been determined by X-ray experimental data on inter- 
atomic distances and on the essential assumption of 
nearest-ion contacts. This assumption is valid for 
those compounds or for those ions in a crystal where 
such contacts take place in reality, while we have 
already seen that some contacts are often absent and 
in such situations the ionic radii turn out to be exag- 
gerated. This mistake appears to be the greatest for 
measurements of lattice parameters in a high- 
temperature cubic phase. As we shall see later on (in 

paper III) the structural phase transitions (one or 
several) occurring as temperature decreases involve 
sequential vanishing of gaps between ions. In the 
lowest-temperature phase there are no gaps at all and 
the contacts of ions take place everywhere. Therefore, 
the procedure for the experimental determination of 
ionic radii turns out to be correct only for the lowest- 
temperature measurements ( T <  Tic). At these tem- 
peratures perovskite has no cubic structure and one 
should measure several lattice parameters, not a single 
one as in the cubic phase. Strictly speaking, the ionic 
radii have to be calculated with the help of X-ray 
measurements in the low-temperature phase where DS 
vanishes completely. In all other cases non-controlled 
exaggeration of ionic radii takes place. 

Now the cause of the exaggeration has been 
revealed let us analyse some examples in which the 
values of the radii are markedly exaggerated. Let us 
consider the question of the 02- ionic radius with 
coordination number 6 (as in cubic perovskites). 
Shannon (1976) gives the value 1.40/~ in this case. 
Considering perovskites YA103 and LaAIO3 from 
region (III) belonging to the X - X  type one ought to 
use the formula alH = a x x  = 2x/2Rx for the cubic 
lattice parameter a which is equal to 3.96/~. The 
experimental values taken from a review table by 
Fesenko (1972) are 3.67/~ for YA103 and 3.78/~ for 
LaAIO3, i.e. in both cases they are less than the 
calculated value. When the oxygen radius is equal to 
1.40/~ the agreement is impossible. In these cases 
agreement would take place if the oxygen radius were 
taken to be 1.30 or 1.33/~ accordingly. Taking into 
account the fact that these two perovskites are the 
most close-packed in comparison with the remainder 
it can be said that these values of the oxygen radius 
are nearer to the real value than are those obtained 
from measurements on loose-packed perovskites of 
types (I) and (II). 

Another example is BaTiO3. According to Shan- 
non's ionic radii BaTiO3 belongs to the A - X  type 
and its lattice parameter in the cubic phase should 
be a~ = aAx = x / ~ ( R A  + Rx)  ~ 4.24 A,. The experi- 
mental value is again far less, 3.97 A. This means that 
either the R(O 2-) value or the R(Ba 2+) value, or both, 
were exaggerated. 

There is only one answer in this situation: the 
correct values of the static ionic radii should be deter- 
mined from the low-temperature measurements or in 
those phases where DS is completely absent. Such 
measurements are unfortunately almost always absent 
in the literature, whereas the calculations based on 
measurements in the cubic phase possessing DS are 
wrong. The whole system of Shannon's radii may be 
revised in the way proposed. 

There exists one more reason for the exaggeration 
of the ionic radii - the dynamic effects. The ions par- 
ticipating in oscillations are disposed at greater dis- 
tances from one another than are motionless ions. In 
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this case the radii may be regarded as effective 
'dynamical' radii which are greater than genuine static 
radii. In Bragg measurements we deal with just the 
dynamical radii. 

The corrections of the ionic radii beyond doubt 
will somehow redistribute the arrangement of crystals 
shown in Fig. 8. Some of the crystals would transfer 
from one region to another and would belong to 
another perovskite type and one can expect another 
specific DS picture in them. 

Analysis of structural distortions 

At present when rather few experiments on DS have 
been carried out in the mono-Laue method the 
belonging of a certain compound to one type or 
another could be revealed without the help of the DS 
picture but with the help of precise X-ray measure- 
ments of Bragg scattering and its changes at structural 
phase transitions. If, for example, the X-ray pattern 
decoding below Tc shows tilted octahedra, then we 
are dealing with the perovskite from region (II) (tilt- 
ing). In other words one can determine the 'frozen' 
types of movement according to the data on Bragg 
diffraction in low-temperature low-symmetry phases 
and thus classify the type of perovskite. 

In the description of the loose packing of the perov- 
skite structure and DS patterns the concept of rigid 
extended objects (chains or planes) plays, of course, 
the fundamental role. Based on results of paper I one 
can say that the experimental evidence for their 
existence is given by the DS patterns obtained in 
some perovskites. At the same time two possibilities 
may be allowed. Either these objects undergo dynami- 
cal movements or they are essentially static displace- 
ments and distributed at random over the crystal. To 
answer this natural question without ambiguity let us 
consider, for example, the highest temperature phase 
of BaTiOs. It is cubic above Tc and tetragonal below 
T~. Independent of the direction in which the sub- 
chains of Ti and O atoms in any unit cell are shifted, 
downwards or upwards, a unit cell is obliged to 
become tetragonal at static displacements. Hence it 
follows that below T~ static displacements of chains 
take place in BaTiO3. From the fact that above T~ the 
crystal is cubic it follows immediately that there are 
no static displacements in the cubic phase. Only the 
equal optical dynamic oscillations of these chains 
along the x, y and z directions take place - just chains 
not atoms since a peculiar DS pattern with shining 
planes in relspace is observed in the cubic phase, 
whereas the independent vibrations of separate atoms 
would give a smooth continuous background. Thus 
the whole picture of the phenomenon occurring in 
BaTiO3 can be elucidated from an analysis of diffuse 
scattering and lattice distortions obtained from Bragg 
diffraction data. 

The rigorous quantitative description of structural 
distortions in perovskites of different types at spon- 
taneously appearing shifting or tilting appears to be 
the essential part of the general problem - the quanti- 
tative description of the temperature evolution of the 
crystal structure looseness and the corresponding 
phase transitions, and also the quantitative descrip- 
tion of the temperature dependence of the diffuse 
scattering in such crystals over the whole temperature 
region. Such a quantitative theory will be set forth in 
papers III and IV for the examples of two main cubic 
perovskite types (I) and (II). It will also be shown 
that such a theory gives an adequate description (both 
qualitative and quantitative) of all the experimental 
data in these compounds available at present. 

We must emphasize a very important conclusion. 
Despite the fact that the group-theoretical analysis 
gives many possible modes in perovskites, and cer- 
tainly 'shifting' and 'tilting' ones among them, 
nevertheless our analysis based on the sizes of ionic 
radii gives that in the perovskites from the 'shifting' 
region the 'shifting' mode is favourable while the 
'tilting' mode is 'forbidden', and vice versa for the 
perovskites from the 'tilting' region. This is the reason 
(and it is by no means accidental) why in some 
perovskites only the 'shifting' modes and in others 
only the 'tilting' modes are 'soft' ones. 

We believe that the analysis of a loose packing 
based on the radii sizes will help investigators to 
predict or to find out by experiment the 'soft' modes 
in other types of crystals. 
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